Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

نویسندگان

  • Kell B. Wilson
  • Dennis Baldocchi
  • Eva Falge
  • Marc Aubinet
  • Paul Berbigier
  • Christian Bernhofer
  • Han Dolman
  • Chris Field
  • Allen Goldstein
  • Andre Granier
  • Dave Hollinger
  • Gabriel Katul
  • B. E. Law
  • Tilden Meyers
  • John Moncrieff
  • Russ Monson
  • John Tenhunen
  • Riccardo Valentini
  • Shashi Verma
  • Steve Wofsy
چکیده

[1] Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the ‘‘diurnal centroid’’ method; the diurnal centroid enabled us to discern whether the peak activity of the variable of interest is weighted more toward the morning or afternoon. In this paper, diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates. Sensitivity tests suggested that the diurnal centroids for latent (LE) and sensible (H ) heat flux depend on atmospheric resistance, static stability in the free atmosphere, stomatal response to vapor pressure deficit, and advection. With respect to diurnal trends of surface energy fluxes at FLUXNET sites, maximum LE occurred later in the day relative to H at most tall forests with continental climates. The lag between LE and H was reduced or reversed at sites that were influenced by advection or by afternoon stomatal closure. The time of peak carbon uptake of temperate forests occurred earlier relative to the temporal peak of photosynthetically active radiation, as compared to boreal forests. The timing of this peak occurred earlier during periods with low soil water content, as it did during the summer in Mediterranean climates. In this case, the diurnal centroid for the CO2 flux was influenced by the response of respiration and photosynthesis to increasing afternoon temperature and by afternoon stomatal closure.

منابع مشابه

Energy Balance Closure at FLUXNET Sites

A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, le...

متن کامل

Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon ...

متن کامل

Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data

Forests are complex ecosystems characterized by several distinctive vertical layers with different functional properties. Measurements of CO2 fluxes by the eddy-covariance method at different heights can be used to separate sources and sinks in these layers. We used meteorological and eddy-covariance flux data gathered at 10 sites in the FLUXNET network across a wide range of forest type, struc...

متن کامل

Advances in upscaling of eddy covariance measurements of carbon and water fluxes

[1] Eddy covariance flux towers provide continuous measurements of ecosystem-level net exchange of carbon, water, energy, and other trace gases between land surface and the atmosphere. The upscaling of flux observations from towers to broad regions provides a new and independent approach for quantifying these fluxes over regions, continents, or the globe. The seven contributions of this special...

متن کامل

Carbon consequences of global hydrologic change, 1948–2009

[1] Eddy covariance data (FLUXNET) provide key insights into how carbon and water fluxes covary with climate and ecosystem states. Here we merge FLUXNET data with reanalyzed evaporative fraction and dynamic land cover to create monthly global carbon flux anomalies attributable to hydrologic change from 1948 to 2009. Changes in land cover had a relative influence of <1% with an absolute effect l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003